

A Gentle Introduction to Computational Social Network Analysis Track 3: Tools for Social Network Analysis

Jaderick P. Pabico Research Collaboratory for Advanced Intelligent Systems Institute of Computer Science University of the Philippines Los Baños College 4031, Laguna

3rd Philipine Health Care and Social Media Summit (#HealthXPH 2017) Marco Polo Hotel, Cebu City, 25 April 2017

Acknowledgements

DOST-PCHRD for the invitation

Acknowledgements

- DOST-PCHRD for the invitation
- #HealthXPH for positioning with technology public health service, research, and instruction in the Philippines

Acknowledgements

- DOST-PCHRD for the invitation
- #HealthXPH for positioning with technology public health service, research, and instruction in the Philippines
- Sir Rick Jason Obrero for using his network so that we can share what we know a little about computational social networks

 Main: To introduce to the workshop participants the computational aspects of social network analysis.

Objectives

- Main: To introduce to the workshop participants the computational aspects of social network analysis.
- Specific:
 - To describe the computational data structures of social networks

Objectives

• Main: To introduce to the workshop participants the computational aspects of social network analysis.

• Specific:

- To describe the computational data structures of social networks
- To discuss some quantitative metrics of social networks

Objectives

• Main: To introduce to the workshop participants the computational aspects of social network analysis.

• Specific:

- To describe the computational data structures of social networks
- To discuss some quantitative metrics of social networks
- To introduce a free software system for social network analysis

Workshop Outline

- Computational data structures
 - Graphs and Sociograms
 - Matrices
 - Linked list

Workshop Outline

- Computational data structures
 - Graphs and Sociograms
 - Matrices
 - Linked list
- Network metrics
 - Basic Metrics
 - Network Centralities
 - Classifying Nodes

Workshop Outline

- Computational data structures
 - Graphs and Sociograms
 - Matrices
 - Linked list
- Network metrics
 - Basic Metrics
 - Network Centralities
 - Classifying Nodes

*Batagelj V and Mrvar A. 2003. *Pajek - Analysis and Visualization of Large Networks*. In **Graph Drawing Software**, Springer pp. 77-103,

Free software system

Pajek*

Data Structures

Visual: Graphs and Sociograms*

* Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices

* Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs

** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

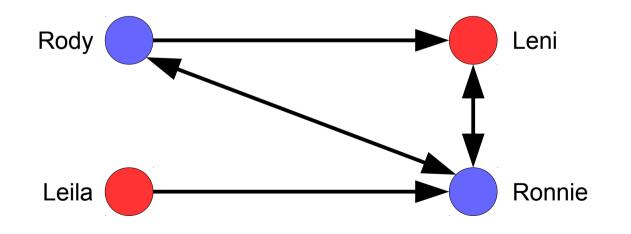
- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs -
 - Example 1** "perception of close friendship"

- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs -
 - Example 1** "perception of close friendship"

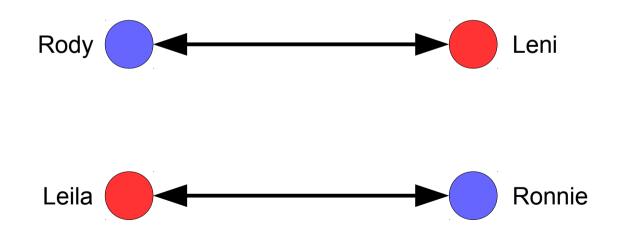
- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs -
 - Example 1** "perception of close friendship"



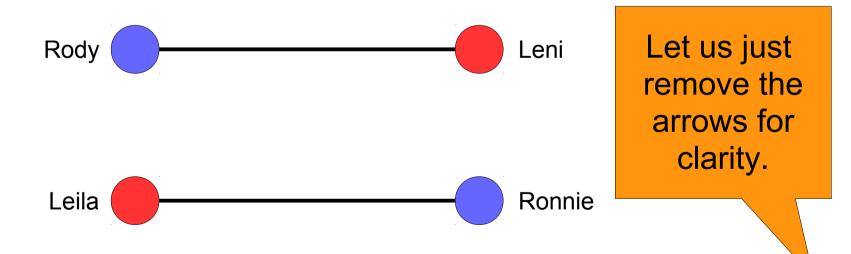
- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs —
 - Example 2** "spouse reciprocated relations"



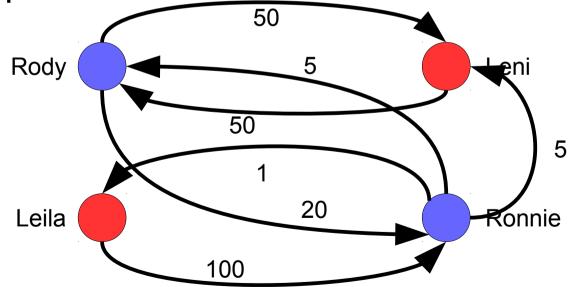
- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs -
 - Example 2** "spouse reciprocated relations"



- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs
 - Example 3** "donated funds"



- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs -
 - Example 1 "perception of close friendship"
 - Directed network

- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

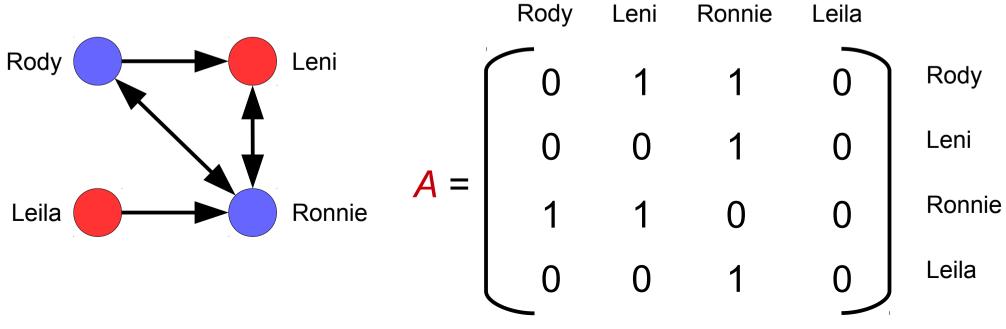
- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs
 - Example 1 "perception of close friendship"
 - Directed network
 - Example 2 "spouse reciprocated relations"
 - Undirected network

- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
- ** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

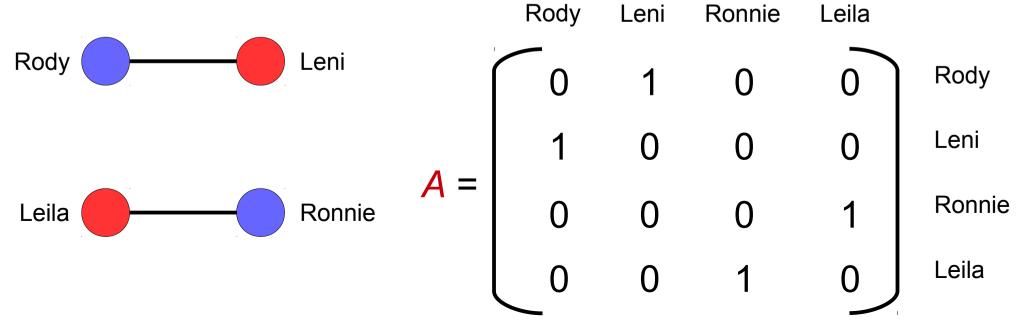
- Visual: Graphs and Sociograms*
 - Actors, Entities, Nodes, Vertices
 - Relations, Ties, Links, Edges, Arcs
 - Example 1 "perception of close friendship"
 - Directed network
 - Example 2 "spouse reciprocated relations"
 - Undirected network
 - Example 3 "donated funds"
 - Directed, weighted network
- * Discussion adopted from Hanneman RA and Riddle M. 2005. Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.

** The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

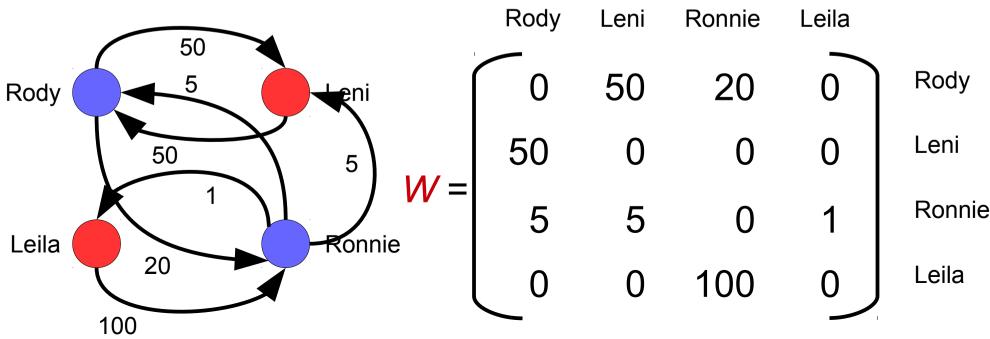
- Matrices
 - Adjacency Matrix, Awhere $A_{j,k} = 1$ if entity j has a relation with entity k, otherwise $A_{j,k} = 0$.
 - Example, directed network



- Matrices
 - Adjacency Matrix, Awhere $A_{j,k} = 1$ if entity j has a relation with entity k, otherwise $A_{j,k} = 0$.
 - Example, undirected network



- Matrices
 - Weighted Adjacency Matrix, Wwhere $W_{j,k} = w$ if entity *j* has a weighted relation *w* with entity *k*, otherwise $W_{j,k} = 0$.
 - Example, weighted directed network



- Other Matrices*
 - Degree matrix, D
 - Normalized adjacency matrix, N
 - Laplacian matrix, L
 - Normalized Laplacian matrix, Z
 - Stochastic adjacency matrix, P
 - Signless Laplacian, K
 - and many more

they are "boring" things to talk about.

Unfortunately,

- Lists
 - List of vertices, V
 - List of edges, *E*

Efficient representation for computation

- Lists

List of vertices, V
 List of edges, E
 Efficient representation for computation

- Example 1: "perception of close friendship"
 - $V = \{ Rody, Leni, Ronnie, Leila \}$
 - *E* = { (Rody, Leni), (Rody, Ronnie), (Leni, Ronnie), (Ronnie, Rody), (Ronnie, Leni), (Leila, Ronnie) }

- Lists

List of vertices, V
List of edges, E
Efficient representation for computation

- Example 2: "spouse reciprocated relations"
 - V = { Rody, Leni, Ronnie, Leila }
 - E = { (Rody, Leni), (Rody, Ronnie) }

- Lists

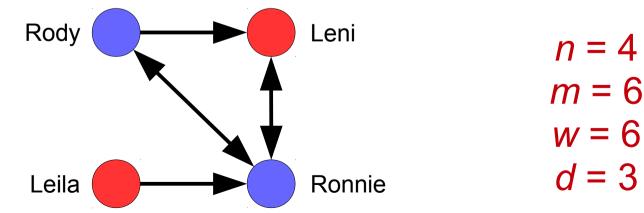
List of vertices, V
List of edges, E
Efficient representation for computation

- Example 2: "donated funds"
 - $V = \{ Rody, Leni, Ronnie, Leila \}$
 - $-E = \{ (Rody, Leni, 50), (Rody, Ronnie, 20), \}$ (Leni, Rody, 50), (Ronnie, Rody, 5), (Ronnie, Lenie, 5), (Ronnie, Leila, 1), (Lenie, Ronnie, 100) }

Network Metrics

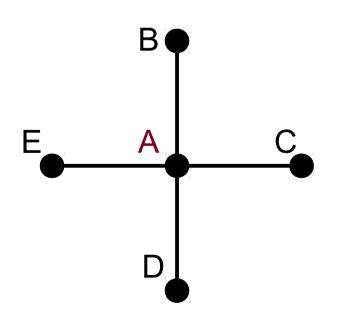
Network Metrics

- Basic Metrics
 - Network size, n Total number of nodes
 - Network volume, m Total number of edges
 - Network weight, w Sum of absolute edge weights
 - Average degree (or Network density), d = 2m/n



Network Metrics

- Network centralities*
 - Which nodes are more "central" than others?
 - Central nodes are those in the "thick of things" or "focal" among the nodes*.



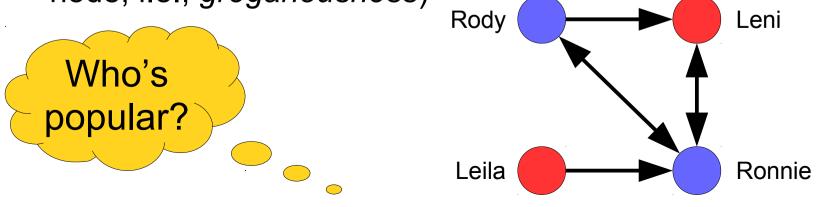
Here, Node A can be considered central because it:

- has more ties;
- <u>can reach others</u> through one edge, while others need two edges;
- <u>can control the flow</u> of data to other nodes.

* Freeman LC. 1978. Centrality in social networks: Conceptual clarification. Social Networks 1, 215-239.

Network Metrics

- Network centralities
 - **Degree centrality** Number of links a node has
 - Concept 1: For undirected network, immediate risk of a node for catching whatever is flowing in the network (gossip, information, virus, etc)
 - Concept 2: For directed network, in-degree (number of edges that point towards the node, i.e., *popularity*) and out-degree (number of edges the point away from the node, i.e., *gregariousness*)



- Network centralities
 - Closeness centrality* Inverse of farness, which is the sum of distances to all other nodes.
 - Computational idea: Compute the shortest distance** between all pairs of nodes
 - Distance is the number of (directed) paths to take to reach another node from a given node.

* Freeman LC. 1978. Centrality in social networks: Conceptual clarification. **Social Networks** 1, 215-239. ** Dijkstra EW. 1959. A note on two problems in connexion with graphs. **Numerische Mathematik** 1, 269-271.

- Network centralities
 - Betweenness centrality* The extent for which a node is a part of transactions among other nodes.
 - In pinoy's red tape parlance, these are the fixers, gobetweeners, or *tulay*.
 - Intuitive computation is via Dijkstra's algorithm but a faster** one exists.

* Freeman LC. 1978. Centrality in social networks: Conceptual clarification. **Social Networks** 1, 215-239. ** Brandes U. 2001. A Faster Algorithm for Betweenness Centrality. **Journal of Mathematical Sociology** 25, 163-177.

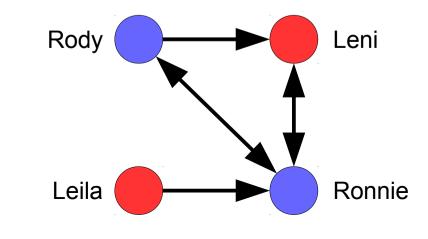
- Characterizing Nodes
 - Hubs and Authorities* (iterative definition)
 - Authorities are nodes that are sources of authoritative information. A good authority is one that is pointed to by many good hubs.
 - Hubs are nodes that are sources of authorities. A good hub is one that points to many good authorities.
 - Can only be performed on a directed network

* Manning CD, Raghavan P and Schütze H. 2008. Introduction to Information Retrieval. Cambridge University Press.

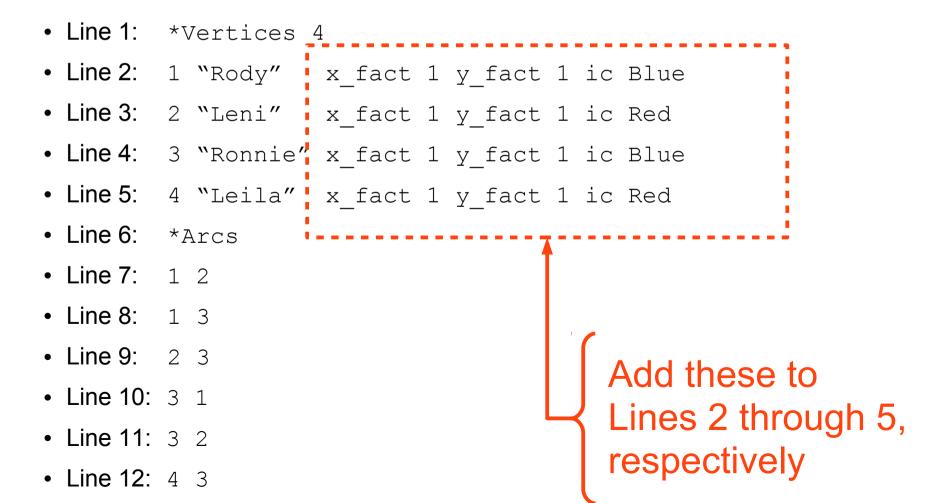
- Workshop #1
 - Install Pajek into your PC Compatibles (Intel-based chipset running MS-Windows OS)
 - Prepare your data set
 - Using any word processor that can save an ASCII file, format the data file as follows:
 - Line 1: *Vertices <number of vertices, n>
 - Line 2 to Line *n*+1: <unique integer> ``<name of vertex>''

- Workshop #1
 - Install Pajek into your PC Compatibles (Intel-based chipset running MS-Windows OS)
 - Prepare your data set
 - Using any word processor that can save an ASCII file, format the data file as follows:
 - Line 1: *Vertices <number of vertices, n>
 - Line 2 to Line *n*+1: <unique integer> ``<name of vertex>''
 - Line *n*+2:
 - If Undirected: *Edges
 - If Directed: *Arcs
 - Line n+3 and onward: <integer> <integer>

- Workshop #1: Example data set: perception of close friendship
 - Line 1: *Vertices 4
 - Line 2: 1 "Rody"
 - Line 3: 2 "Leni"
 - Line 4: 3 "Ronnie"
 - Line 5: 4 "Leila"
 - Line 6: *Arcs
 - Line 7: 1 2
 - Line 8: 1 3
 - Line 9: 2 3
 - Line 10: 3 1
 - Line 11: 3 2
 - Line 12: 4 3



• Workshop #1: Example data set: *perception of close friendship*

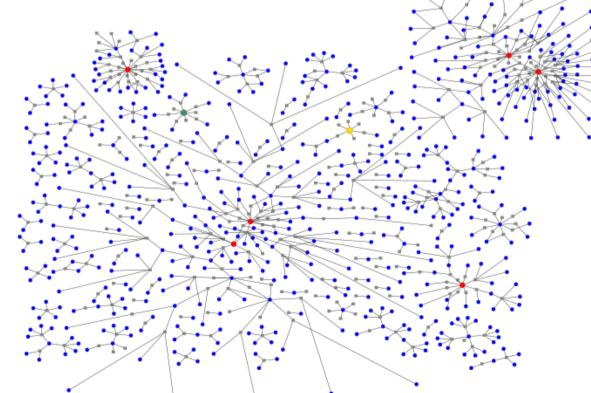


- Workshop #1: Example data set: *perception of close friendship*
 - Draw the Network and explore the drawing options
 - Compute for the following centralities:
 - Degree
 - Closeness
 - Betweenness
 - Identify the Hubs and Authorities

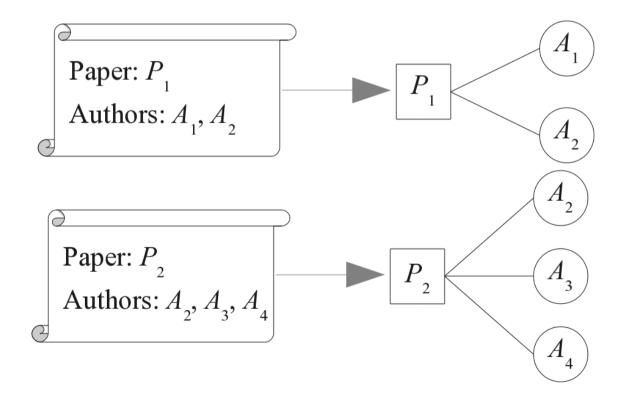
- Workshop #2: Scientific Collaboration Network
 - Copy the Pajek dataset for the Collaboration Network of Filipino Computer Scientists*
 - Inspect, using your word or text processor (preferably notepad or better), if the data file follows the Pajek input format
 - 542 nodes/authors
 - 969 edges/co-authorship

^{*} Pabico JP. 2010. Authorship patterns in computer science research in the Philippines. **Philippine Computing Journal** 5(1):1-13

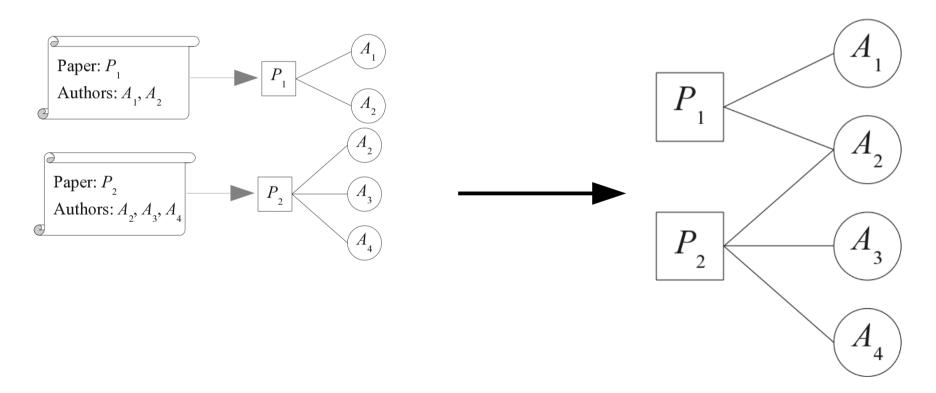
- Workshop #2: Scientific Collaboration Network
 - Started out as a paper-author bipartite network with
 542 authors and 326 papers



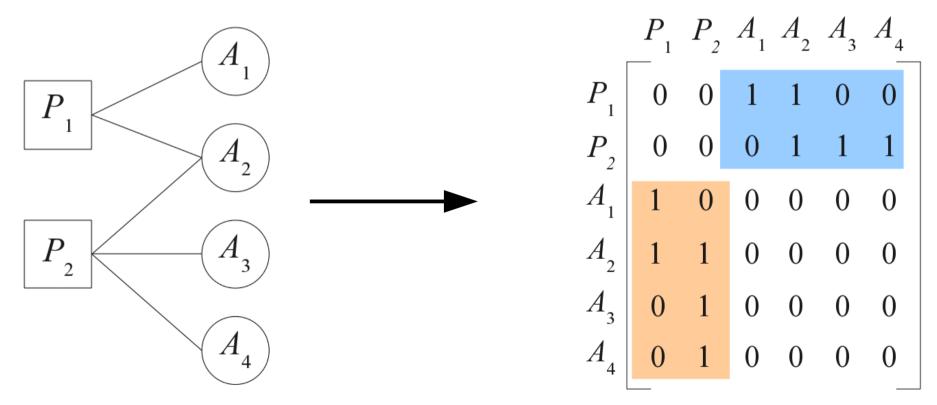
- Workshop #2: Scientific Collaboration Network
 - Idea:



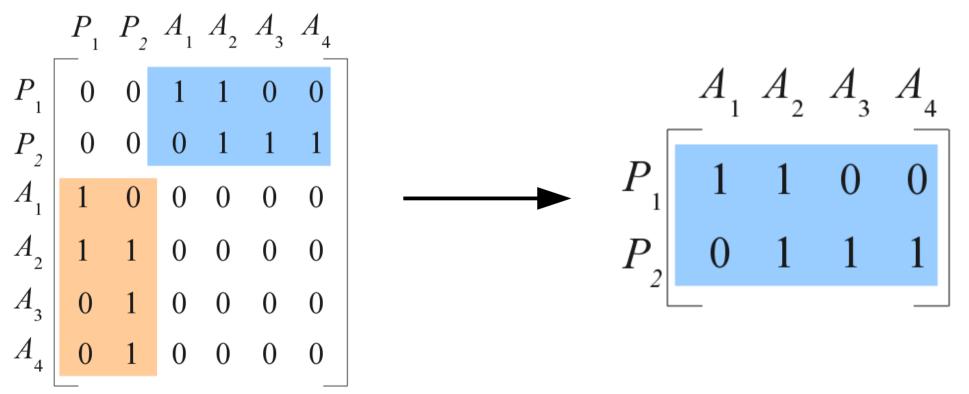
- Workshop #2: Scientific Collaboration Network
 - Idea:



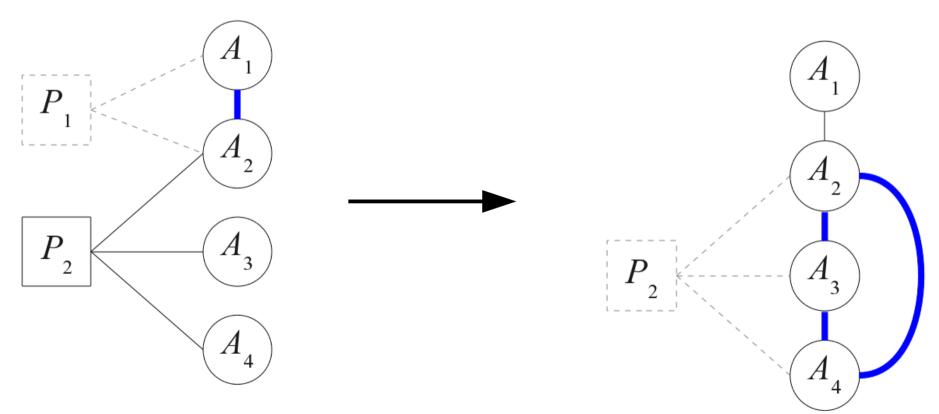
- Workshop #2: Scientific Collaboration Network
 - Idea:



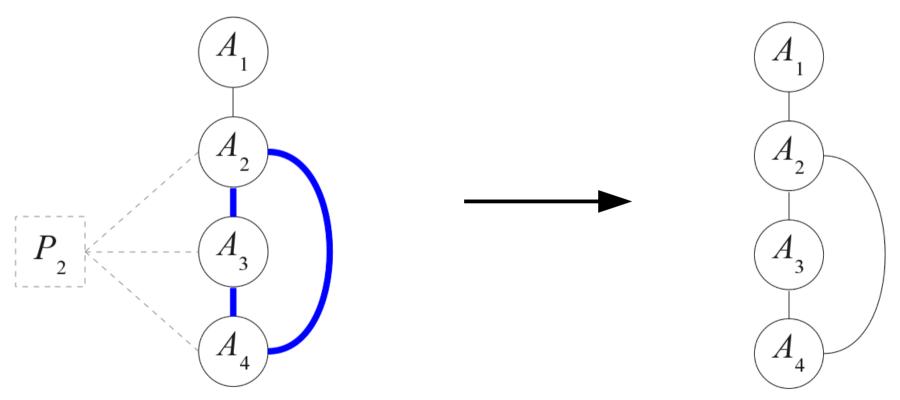
- Workshop #2: Scientific Collaboration Network
 - Idea:



- Workshop #2: Scientific Collaboration Network
 - Idea:



- Workshop #2: Scientific Collaboration Network
 - Idea:



- Workshop #2: Scientific Collaboration Network
 - Load the dataset
 - Draw the network using various drawing techniques
 - Compute for the centralities
 - Degree
 - Closeness
 - Betweenness
 - Characterize the nodes
 - Hubs and authorities

OF THE REAL PROFESSION

- Workshop #3: Sex Network*
 - Load the dataset Sex Network
 - Vertices: 16,730
 - Edges: 50,632
 - The data is composed of two types of nodes:
 - Male who are escort service seeker; and
 - Female who are escort service provider.
 - Modify the data so that it can be accepted by Pajek
 - Can we just use your word/text processor?

* Rocha LEC, Liljeros F and Holme P. 2010. Information dynamics shape the sexual networks of Internet-mediated prostitution. **Proceedings of the National Academy of Sciences of USA** 107(13):5706--5711.

- Workshop #3: Sex Network
 - Draw the network using various drawing techniques
 - Compute for the centralities
 - Degree
 - Closeness
 - Betweenness
 - Can we find who are the hubs and the authorities?

- Workshop #4: Doctors Network*
 - 241 vertices, 1098 edges
 - Draw the network using various drawing techniques
 - Compute for the centralities
 - Degree
 - Closeness
 - Betweenness
 - Can we find who are the hubs and the authorities?

* Coleman J, Katz E and Menzel H. 1957. The diffusion of an innovation among physicians. Sociometry 20(4):253-270.

Questions?

- Email to <jppabico@uplb.edu.ph> for:
 - Questions requiring detailed answers
 - Proposals for research collaboration
 - Soft computing and machine learning
 - HPC/scheduling and dynamic load balancing
 - Wireless adhoc networks
 - Computer security and forensics
 - Information visualization
- http://www.ics.uplb.edu.ph/jppabico

